

1

Justice Information Network

Data Exchange (JINDEX)

Traffic Records Project

Logical Design Document

Washington Department of

Information Services (DIS)

1110 Jefferson Street SE

PO Box 42445

Olympia, Washington 98504-2445

2

Revision & Sign-off Sheet

Change Record

Date Author Version Change Reference

05/11/06 Rick Jenness 1.8 Phase 1 Final version

09/22/06 Rick Jenness 2.0
Phase 2 Draft Version updated with
new WSDL specification

10/26/06 Rick Jenness 2.1 Phase 2 Final version

Reviewers

Name
Version

Approved
Position Date

Scott Bream

Document Properties

Item Details

Document Name E-Trip Logical Design - Final.doc

Author Andrei Kossoroukov & Rick Jenness

Creation Date January 23, 2006

Last Updated 1/12/2007 7:58 AM by Rick Jenness

Deleted: 10/27/2006 5:07 PM

3

Table of Contents

1.0 E-Trip System..6

1.1 E-Trip System Overview ..6

1.2 General System Architecture ..7

1.3 Use Cases ..8

1.3.1 Sending Message in Normal or Test-Process Processing Mode from One

Participant to Other Participants ...8

1.3.2 Sending Notification from JINDEX to Participants9

1.3.3 Sending Message in Test-Notify Processing Mode.................................9

2.0 Project Assumptions / Definitions ...10

2.1 Technology Assumptions..10

2.2 Design Assumptions ..10

2.3 Definitions ...11

3.0 Tiers...14

4.0 Message Flow ..15

4.1 Message Processing in Normal or Test-Process Modes (Use Case 1)15

4.1.1 Message Flow Diagram...16

4.1.2 Message Flow Description ...17

4.1.2.1 Receiving Message, Certificate Validation, Sender Authentication ..17

4.1.2.2 Data Validation, Sender Identification, Sender Authorization,

Original Message Schema Validation ...18

4.1.2.3 Routing and Addressing ...19
4.1.2.4 Sending Messages...20

4.1.3 Logical Flow Diagram ...21

4.1.3.1 Message Receiving, Certificate Validation, Sender Authentication ..21
4.1.3.2 Data Validation, Sender Authorization22

4.1.3.3 Routing ...23

4.1.3.4 Addressing...24

4.1.3.5 Sending Messages...25

4.2 Notifications (Use Case 2) ..26

4.2.1 Message Flow Diagram...26

4.2.2 Message Flow Description ...26

4.3 Test-Notify Messages (Use Case 3) ...27

4.3.1 Test-Notify Message Flow Diagram ..28

Deleted: 18

4

4.3.2 Test-Notify Message Flow Description...28

5.0 Security Model Overview ...30

5.1 Security Specifications – Overview ..32

5.2 Authentication ..32

5.2.1 Authentication Process ...33

5.3 Authorization..34

5.3.1 Authorization Process...34

5.4 Data Privacy...35

5.4.1 Data in Transit ..36

5.4.2 Persisted Data...36

5.4.3 Certification Protocol ..36

6.0 Web Services Enhancements ...38

6.1 WS-Security...38

6.1.1 Sending Secure Message ..39

6.1.1.1 Diagram ..39

6.1.1.2 Description...40
6.1.1.3 Implementation ..43

6.2 WS-Secure Conversation ...43

6.2.1 Secure Conversation Design..43

6.2.1.1 Description...43

6.2.1.2 Implementation ..44
7.0 Web Services Interface ...45

7.1 General Description...45

7.2 Receiving Web Service...45

7.2.1 JINDEXExchange Web Method...45

7.2.1.1 Signature...45
7.2.1.2 Input Document Formats ...46

7.2.1.3 JINDEX Exchange Response Format ..48

7.3 JINDEX Web Service WSDL ..49

8.0 Business Rules Layer and Data Layer..52

8.1 Message Statuses ...52

8.2 Archiving Messages in the Message Log ...53

8.3 Authentication ..54

8.4 Authorization..54

8.5 Routing ...56

8.5.1 Message Types and Processing Modes ..56

Deleted: 33

Deleted: 36

5

8.5.2 Routing Types ...57

8.6 Addressing...57

8.6.1 Addressing Information ..57

8.7 Error Handling ..59

8.7.1 Message Log ...59

8.7.2 Error Categories ..59

8.8 Notification ..59

8.8.1 Notification Message Structure ..59

8.8.2 Notification Subscriptions ...60

8.9 Auditing...60

Table of Tables

Table 1 – QA Test Environment Authorization Table..55

Table 2 – Production Environment Authorization Table ..56

Table 3 – Routing Table ..57

Table 4 – Addressing rules ..58

Deleted: 58

6

1.0 E-Trip System

1.1 E-Trip System Overview
The Justice Information Network Data Exchange (JINDEX) is a message brokering

service created by the Washington Integrated Justice Information Board (WIJIB) that

provides the means by which Justice related agencies in the State share key

information and business processes. The WIJIB has established that the JINDEX will

be the foundation for justice information sharing projects within the State enterprise

and will be designed to serve the diverse justice requirements of State & Local

government entities as well as appropriate Federal and quasi-governmental entities

operating in the State of Washington.

Based on the Microsoft BizTalk platform, and deployed on servers hosted at the

Washington Department of Information Services (DIS), JINDEX is a Service Oriented

Architecture (SOA) platform that will use Web Services and Justice XML to give
participants the ability to exchange information and conduct transactions reliably, in

real time, consistent with the individual operational requirements of its stakeholders.

Each year, over one million tickets1 are written for traffic and vehicle infractions in

the State of Washington. Additionally, nearly 150,000 vehicle collisions reports and

other forms are created by State and Local Law Enforcement officers as a part of

their patrol assignments. Currently, all of these forms are created by hand, and

entered into various computer systems around the state, some as many as four

separate times. This manual process is prone to errors, time consuming, and very

costly to taxpayers.

Stakeholders in this process have long envisioned a process where this data can be
entered once and automatically be processed from the officer’s patrol car, to their

local or regional processing center, through the state court system and eventually

archived in one of several state data repositories, all without ever having to re-enter
the data. The end goal of this initiative is to speed processing, eliminate data entry

errors, and minimize the manual effort processing information gathering forms by:

1. Automating data transfers between various information consuming agencies,

and

2. Providing timely processing of pertinent and permitted information between
data aggregating and consuming agencies.

1 Discussions surrounding the E-TRIP project included numerous references to a “Citation”, “Ticket”, and

“Notice of Infraction” somewhat interchangeably. Accurately stated, “Citation” is a term used by the
Washington Rules of Court to describe a charging document for criminal cases and a “Notice of Infraction”
is the document used for non-criminal infractions. In using the generic term “Ticket” in this document,we
are referring to both.

7

1.2 General System Architecture

8

1.3 Use Cases

1.3.1 Sending Message in Normal or Test-Process

Processing Mode from One Participant to Other
Participants

Message Sender

Message Recipients

Sends Message

To JINDEX

Receive Message

From JINDEX

JINDEX

9

1.3.2 Sending Notification from JINDEX to

Participants

1.3.3 Sending Message in Test-Notify Processing

Mode

Message Sender

Notification

Recipients

Sends Message

To JINDEX

Receive Notification

From JINDEX

JINDEX

10

2.0 Project Assumptions / Definitions

2.1 Technology Assumptions
This section identifies the conditions that impact the logical design. The following

constraints and assumptions will be applied to this design.

Technology Selection

1. It is assumed that custom components may be written and deployed using

Microsoft .NET Framework v2.0 and Microsoft Enterprise Library for .NET
Framework 2.0.

2. It is assumed that the database platform will be Microsoft SQL Server 2000.

3. It is assumed that the message integration platform will be Microsoft BizTalk

2004.

4. It is assumed that the WS-* standards implementation will be performed

using Microsoft WSE 3.0.

5. It is assumed that the notification procedures will be implemented using SQL

Server Notification Services (SSNS).

Third-Party Components

1. It is expected that no third-party components will have to be purchased to
implement this system.

2.2 Design Assumptions

1. The standard JINDEX/E-Trip message has two distinct parts; 1) The message

parameters which are XML elements used to determine the sender, message

type and routing itinerary, and; 2) The message body which contains the

business content being exchange as an XML document. This design supports
the requirement that stakeholders be able to modify the content (schema) of

the message body without necessitating any modifications of the JINDEX

messaging application

2. All six of the current message types (and any future message types) will

conform to the standard JINDEX/E-Trip message construction ((1) set of

parameters and (1) message body)

3. JINDEX will perform schema validation on the message parameters, but will

not validate or perform any schema validation or transformation on the

message body.

11

4. Stakeholder requirements dictate that digital attachments such as digital

photographs or drawings will be contained within message body and will not

separated from or processed differently in any way by the JINDEX platform.

5. Messages will be persisted in JINDEX until they are received and accepted (or

rejected) by all Recipients.

6. After all Recipients respond to JINDEX, all original messages are removed

from JINDEX for security reasons. JINDEX log files will keep only auditing,
routing, and processing information.

2.3 Definitions

1. Participant – A state or local agency that is authorized to send or receive

messages through the JINDEX platform. Throughout this document specific

participants are referenced by the following abbreviations:

• DIS – Washington State Department of Information Services

• AOC – Washington State Administrative Office of the Courts

• WSP – Washington State Patrol

• DOL – Washington State Department of Licensing

• WSDOT – Washington State Department of Transportation

• LEA – Generic reference to a Law Enforcement Agency. WSP is the

lead Law Enforcement agency on this project, but the term applies to

any LEA who may become a participant in the future.

• LEO – Generic reference to an individual Law Enforcement Officer.

2. Message Sender – The message sender is the agency that is sending the

message. Within the JINDEX system, all messages are routed through the
JINDEX platform in order to de-couple sending and receiving services. As

such, the sender of a message is only the originator in half the cases.

Example:

• Law Enforcement sends a ticket to JINDEX. The sender is the law

enforcement agency.

• When JINDEX sends the ticket to AOC, JINDEX is the sender, though it

is not the message originator.

3. Message Originator – This is the agency that originally created the
message. It remains the same whether the LEA or JINDEX is the sender of

the message

4. Message Receiver – A message receiver is any participant that receives E-

TRIP messages as a part of a JINDEX Exchange. A Message Receiver can be

an agency that is a consumer of a message, or can be the JINDEX platform
which routes but does not retain messages

12

5. Message Recipient – This is the agency that is to receive and consume the

message. There are no message types currently in scope for this project

where JINDEX would be the end recipient.

6. Message – Also referred to as a JINDEX Document, is a group of XML

nodes (Parameter) and an XML document (Message) contained within a SOAP
wrapper that is sent from one participant to another through the JINDEX

platform. Each message must contain XML Parameter nodes, and an XML
Message document.

7. Acknowledgement – Also referred to as a JINDEX Acknowledgement. This

is a brief message returned to the participant who sent a message notifying

the sender that their message was received. Acknowledgments are sent

synchronously meaning that the sender will wait for an acknowledgement

before sending another message. Acknowledgements can be either positive

(ACK) or negative (NAK)

(Important note: An acknowledgement only reflects the successful or

unsuccessful communication of a message between JINDEX (as the sender or
receiver) and another participant (as the sender or receiver). It does not

indicate that a message has completed its routing itinerary and arrived at its
final destination nor that it was processed successfully. An acknowledgement

should not be confused with a Functional Response Message described below.

8. JINDEX Exchange - A term used to describe the interaction between the
JINDEX messaging system and a Participant system. For example, an

exchange is said to have occurred when a Message (JINDEX Document) is

sent by an LEA to JINDEX, the message is successfully received by JINDEX,

and JINDEX returns an acknowledgement (JINDEXAcknowledgement) for that

message. For a message to be transmitted from one agency to another, two

(2) JINDEX Exchanges must occur:

• Sending agency sends to JINDEX

• JINDEX sends to receiving agency

For performance reasons, this concept is important to remember as a single

Ticket message will result in four (4) JINDEX Exchanges, and a single Collision

Message

9. Original Message – Also referred to as a Primary Message, is the first

message that starts a document exchange. Within the scope of this project

there are three Primary messages:

• TICKET_MESSAGE – A message that originates from a Law

Enforcement Agency and contains ticket data.

• COLLISION_MESSAGE - A message that originates from a Law

Enforcement Agency and contains Collision report data.

• DISPOSITION_MESSAGE – A message that originates from AOC and

contains information about a ticket that has been adjudicated by the

courts.

10. Functional Response – A functional response (also referred to simply as a

“response”) is a separate and discrete message that is sent back to the

13

Message Originator by the Message Recipient confirming that their original

message was received and processed.

An affirmative functional response will contain a receipt number (of some

origin) like a Collision Report number or Court Case number. A rejecting

functional response will NOT contain a receipt number and may contain
textual information describing why the primary message is being rejected. All

functional response are sent asynchronously, meaning that the Message
Originator is not waiting for the functional response before it sends another

message. The functional response can be returned near instantaneously, or

can be delayed several hours without impacting the operations of the system.

Within the scope of this project there are three Functional Response

messages:

• TICKET_RESPONSE – A message that originates from AOC and is

returned to the LEA that sent the original ticket message.

• COLLISION_RESPONSE - A message that originates from WSDOT

and is returned to the LEA that sent the original Collision Report
message.

• DISPOSITION_RESPONSE – A message that originates from DOL
and is returned to AOC.

11. Message Subscribers - The JINDEX platform operates on a Publish /

Subscribe model, meaning that any message type can have any number of
subscribers. For example, when an LEA sends (“publishes”) a collision report

message to JINDEX, both WSDOT and DOL are configured as “Subscribers” to

that message type and each receives a copy of the message.

14

3.0 Tiers

JINDEX Participant

Message Originator

JINDEX Participant

Message Recipient

JINDEX RECEIVING WEB SERVICES JINDEX SENDING COMPONENT

JINDEX DATABASE

JINDEX ORCHESTRATIONS / BUSINESS RULES

JINDEX

BizTalk Server 2004

Services/External Interface Tier

JINDEX Participants

Orchestration / Business Rules Tier

Data Tier

Notification Services

Notification Tier

MESSAGE LOG

CERTIFICATE

STORAGE

15

4.0 Message Flow

4.1 Message Processing in Normal or Test-

Process Modes (Use Case 1)

This case describes the message flow between one Participant (Message Originator)

and other Participants (Message Recipients). Messages are sent from the first

Participant to JINDEX, and then distributed from JINDEX to other Participants. To

pass the messages all parties use push-technology rather than pull-technology. To

pass a message to JINDEX, the Sender invokes JINDEX Web methods. To pass a

message to Recipients, JINDEX invokes Recipient Web methods.

16

4.1.1 Message Flow Diagram

17

4.1.2 Message Flow Description

4.1.2.1 Receiving Message, Certificate Validation, Sender

Authentication

1. Message Originator creates a message (example: traffic ticket, collision
report, or a functional response) as an XML file, adds WS-* headers and

submits the message to the JINDEX Receiving Web Service. The message is

wrapped into a SOAP envelope and the WS-* section is added to the SOAP

header. (If the Message Originator is based on the Microsoft platform, the

suggested way to implement WS-* standards is WSE 3.0.)

2. The JINDEX Receiving Web Service receives the message, unwraps the WS-*

section and performs the following actions based on the WS-* standards (not

necessarily in the presented sequence):

a. Validates Sender X.509 Certificate Structure;

b. Decrypts the one time symmetric key with the JINDEX Private key;

c. Decrypts the message with the one time symmetric key;

d. Uses the Sender public key to validate the Sender signature;

e. Checks that the Sender certificate is valid and matches an existing

entry in the Trusted People folder in the Certificate Storage;

f. Checks that the Certificate Authority is valid and matches existing
entry in the Trusted Root Certification Authorities folder in the

Certificate Storage;

g. Checks that the Sender certificate is not revoked by the Certificate
Authority.

3. The JINDEX Receiving Web Service validates the XML schema of the

parameters.

4. The JINDEX Receiving Web Service extracts the parameters from the XML.

5. The Receiving Web Service parses the Sender X.509 certificate and extracts
the Sender Certificate Number and the Issuer Name from the certificate.

6. The Receiving Web Service passes the message to BizTalk along with the

Sender Certificate Number, the Issuer Name, and additional parameters.

7. In case of success, the Receiving Web Service returns an positive

acknowledgement (ACK) to the Sender. The ACK contains a Return Code (P)

and the Original Message ID.

8. If any error happened during the previous steps, the Receiving Web Service

responds with a Negative Acknowledgement (NAK) to the Sender. The NAK

contains a Return Code (F)ailure or a specific error code “E##”) and the

Original Message ID (assigned by the Sender). If the Original Message ID can

18

not be retrieved from the parameters, 0 (zero) is assigned to the Original

Message ID.

4.1.2.2 Data Validation, Sender Identification, Sender

Authorization, Original Message Schema Validation

1. BizTalk receives the message from the Receiving Web Service. The message

Status field is set to P (Processing).

2. BizTalk validates the Message Type and Processing Mode fields against lookup

tables.

a. If the Message Type field is invalid, the message Status field is

changed to E20 (Error) and the message information is stored in the

JINDEX Message Log. (NOTE: In release 1.10 and higher of the E-Trip Messaging
system, Message Type is checked at the Web Service layer as an enumerated value in
the WSDL. As such, E20 should never appear as a message status under normal

conditions. Because of the critical nature of this element, the BizTalk logic still checks

the validity of the value to ensure that the WSDL, and the routing logic stay in sync.)

b. If the Processing Mode field is invalid, the message Status field is

changed to E22 (Error) and the message information is stored in the

JINDEX Message Log. (NOTE: In release 1.10 and higher of the E-Trip Messaging
system, Processing Mode is checked at the Web Service layer as an enumerated value in
the WSDL. As such, E22 should never appear as a message status under normal

conditions. Because of the critical nature of this element, the BizTalk logic still checks
the validity of the value to ensure that the WSDL, and the routing logic stay in sync.)

3. BizTalk uses the Sender Certificate Number and the Issuer Name to retrieve

the Sender ID from the participants table. BizTalk also populates the Sender

ID element in the message.

4. If the Sender ID is not found in the participants table of the JINDEX database,

the message Status field is changed to E24 (Error), and the message
information is stored in the JINDEX Message Log.

5. BizTalk performs Sender authorization based on the Message Type and
Processing Mode parameters to determine if the sender of the message is

authorized to originate messages of the type submitted. (Law Enforcement

may send tickets to AOC, but WSDOT may not… See the authorization tables
in section 9). If the authorization fails, the message Status field is changed

to E26 (Error) and the message information is stored in the JINDEX Message

Log.

6. If any other exception occurred during the previous steps (1-5), the message

Status field is changed to E50 (Error), and the message information is stored

in the JINDEX Message Log.

19

4.1.2.3 Routing and Addressing

1. If the Processing Mode parameter of the message is Test-Notify, the message

information is logged in the Message Log and BizTalk stops processing the

message.

2. BizTalk determines the Recipients of the message. Other than Test-Notify,

there are two possible routing mechanisms.

a. With the exception of the Ticket Response and Collision Response

messages, the Recipient(s) are identified by the Message Type and the

Processing Mode parameters as described in the Routing section.

b. In case of the Traffic Ticket Response and Collision Response, the

JINDEXRecipientID element has to be present as one of the elements

of the additional parameters.

i. If the JINDEXRecipientID element is not present, the message

Status field is changed to E30 (Error) and the message

information is stored in the JINDEX Message Log.

ii. If the JINDEXRecipientID element is present, it has to match

one of LEA IDs in JINDEX participant database. In case it does
not match a valid LEA ID, the message Status field is changed

to E32 (Error) and the message information is stored in the

JINDEX Message Log.

3. BizTalk retrieves the Current Recipient Status from the database.

Note. Current Recipient Status field is set up by the system (JINDEX) administrator. The system

administrator can modify the status any time on the request of the Participant and following
correct procedures. The Not Responding status can be also set up by JINDEX if a call to the

Recipient Web Services fails. A separate scheduled process (a SQL Server stored procedure) will
change Not Responding statuses back to Normal status periodically.

4. For each Recipient, BizTalk determines the destination URI based on the

Message Type, Processing Mode, Recipient ID, and Current Recipient Status

fields as described in the Addressing section.

a. The abovementioned combination of parameters may not result in any

valid destination. In that case, the message Status field is changed to

E34 (Error) and the message information is stored in the JINDEX
Message Log.

b. The Current Recipient Status may indicate that the message should be
put on hold (Current Recipient Status = Hold, Current Recipient Status

= Test and Processing Mode = Hold, Current Recipient Status = DRBC

and Processing Mode = Test). In that case BizTalk will wait for 5

minutes then continue from step # 3 above.

c. Current Recipient Status may indicate that the recipient is not

responding. In that case BizTalk continues after a delay. The duration
of the delays may be different for this and the previous cases.

20

5. If the message is not put on hold and the destination is valid, BizTalk calls the

Sending component and passes the message, parameters, and the Recipient

URI to the Sending component.

6. If the Sending component responds with a communication error, the Current

Recipient Status is changed to Not Responding. BizTalk continues from step
5 after a delay.

7. If the Sending component responds with success, the message Status field is
changed to “P” which indicates that the message exchange was Completed;

the message information is logged in the Message Log; and the BizTalk

orchestration concludes the processing of that message.

8. If the Sending component indicates the message was not accepted by the

Recipient, the message Status field is changed to F (Failure), the message

information is logged in the Message Log, and BizTalk stops processing the

message.

9. For each Recipient steps #3-8 are repeated.

4.1.2.4 Sending Messages

1. The Sending Component receives the message from BizTalk along with the
parameters, and the Recipient URI.

2. The Sending Component retrieves the Recipient and JINDEX X.509 certificates

from the Certificate Storage.

3. The Sending Component adds WS-* information, including JINDEX certificate,

to the message and submits the SOAP wrapped message to the recipient URI.

4. The Recipient may respond with success or failure or a communication error

may occur. In all cases, the Sending Component responds to BizTalk

indicating whether the message was successfully delivered or not.

5. In case of communication error the Sending Component may attempt to

resend the message one or more times based on the configuration

parameters.

6. If any exception occurs during steps 1-5, the Sending Component responds to

BizTalk indicating the error.

21

4.1.3 Logical Flow Diagram

4.1.3.1 Message Receiving, Certificate Validation, Sender
Authentication

22

4.1.3.2 Data Validation, Sender Authorization

Change Message

Status to “E20”

Is Message

Type Valid?

Is Processing

Mode Valid?

Is the Sender

Authorized to Send

Messages of this Type
in this Processing

Mode?

Error Handling

Change Message

Status to “E22”

Error Handling

Change Message

Status to “E26”

Error Handling

Log Message

Information in JINDEX

Message Log with
Error Status

Error Handling

Any Other Exception
Occurs

Change Message

Status to “E50”

Error Handling

NO

NO

NO

START

 Data Validation

 Sender Identification

 Sender Authorization

Lookup Sender ID

Sender ID Found?
Change Message

Status to “E24”

Error Handling

CONTINUE

END

23

4.1.3.3 Routing

Is JINDEXRecipientID

Parameter Empty?

Does

JINDEXRecipientID

Match a Valid

Participant?

Change Message

Status to “E30”

Error Handling

Identify Recipient(s)

Based on the Message

Type and Processing

Mode

Change Message

Status to “E32”

Error Handling

Any Other Exception

Occurs

Change Message

Status to “E50”

Error Handling
Does Message

Type require a

Recipient ID?

YES

NO

YES

NO YES

NO

Log Message

Information in JINDEX

Message Log with

Status = Test-Notify

Completed

END

YES
Processing Mode=

“Test-Notify”?

NO

Log Message

Information in JINDEX

Message Log with

Error Status

Error Handling

END

24

4.1.3.4 Addressing

25

4.1.3.5 Sending Messages

START

Get Original Message,

Additional Parameters,
Recipient URI from

BizTalk

Retrieve JINDEX and

Participant X.509
Certificates from

Certificate Storage

Apply WS-Security to

Message Using WSE

Send Message to
Participant

Success?
Not Accepted?

Failure?

Failure

N Times,

Config Param

Return Result to

BizTalk

END

Any Exception Occurs

26

4.2 Notifications (Use Case 2)

4.2.1 Message Flow Diagram

Data Tier

Notification Services

Notification Tier

JINDEX Processes

Notification Recipient

Notification

SMTP Server

Queries Logs Frequently

JINDEX DATABASE
MESSAGE LOG

4.2.2 Message Flow Description

1. Different JINDEX processes may encounter errors or need to issue

notifications to JINDEX Participants (i.e. messages sent in the Test-Notify
mode).

2. These processes call a SQL stored procedure to store this information in the

JINDEX Message Log.

3. MS SQL Server Notification Services query the Message Log periodically to

find new records.

4. Notification Services determines recipient(s) of the notification message

based on their subscription to notifications.

5. In case of a new record, Notification Services will create a new notification
message (e-mail).

6. Notification Services submit the notification to an SMTP server for delivery.

7. Notification Services update the notification record indication that the

notification was sent.

27

4.3 Test-Notify Messages (Use Case 3)

Message will be processed through the entire JINDEX – E-TRIP system, but will not
be forwarded to the subscribing Participant(s). After completing the Business Rules

layer of the process, a record will be placed in the Message Log indicating successful

processing of the record. The Notification Services will send an e-mail to an
appropriate contact for the originating Participant indicating the successful arrival of

the message.

This use case is a combination of use cases 1 and 2.

28

4.3.1 Test-Notify Message Flow Diagram

JINDEX Participant
Message Sender

JINDEX RECEIVING WEB SERVICES

JINDEX
BizTalk Server 2004

CERTIFICATE
STORAGE

Services Tier

JINDEX Participants

Business Rules Tier

Message
WSE 3.0 Header
SOAP Envelop

Acknowledgement
(Success/Failure

Original Message ID)

JINDEX BUSINESS RULES

Notification Services

Notification Tier

SMTP Server

Queries Logs Frequently

JINDEX
MESSAGE LOG

Notification

Original Message
Additional (Routing)

Parameters,
Certificate

Message Information
For Notification

4.3.2 Test-Notify Message Flow Description

Test-Notify messages are received according to the description in section 5.1.2

(items 1-17). However, instead of sending the message the following steps are

performed:

1. The message Status is changed to T (“Test-Notify completed”).

2. The message information is placed in the Message Log.

29

3. BizTalk stops processing the message.

4. The notification is sent to the destination as described in section 5.2.2.

30

5.0 Security Model Overview

The security model for JINDEX is comprised of three complementary security

elements:

• Authentication – The methods and processes used to reliably determine the
identity of a user of the JINDEX system. The authentication model answers

the questions “Who is this user?” and “Are they a valid JINDEX participant?”

• Authorization – The methods and processes used to determine which
services of JINDEX are available to valid participants. For example, Law

Enforcement agencies are able to submit tickets and collision reports to

JINDEX, but may not submit a Court Disposition report to the Department of
Licensing

• Data Privacy – The methods and processes used to ensure that sensitive

data remains protected while it is being transmitted from one participant to

another (Transport Security) and while it is being stored (persisted) at a

participating partner. (Secure Persistence)

Recommendations and minimum standards for each of these elements are detailed in

the Specification section of this document.

Communication Networks

The Washington Department of Information Services (DIS) manages the voice and

data communications networks for a large percentage of State and Local

Governmental entities. Within the justice ecosystem, three networks are used to

communicate with other JINDEX participants and are depicted below:

• State Governmental Network (SGN) – A high speed, secure private
network for exclusive use by State Agencies.

• Intergovernmental Network (IGN) – A broadly deployed private network

used by State Agencies, Local Governmental entities and Law Enforcement.

• The Public Internet – Used by the public at large, and a growing number of

local entities and State Agencies

The security specifications being proposed will provide a ubiquitous level of security

and reliability regardless of which network is used.

31

The State of Washington requires that any State agency accessing the public internet
must pass through a security filter / firewall known as Fortress. Fortress is a

hardware / software based system that separates the States “internal networks”

(SGN & IGN) from the “external” public internet. Because some participants need to
access JINDEX via the internet, all of their traffic must pass through the Fortress

system. Those participants that are connected to either the IGN or SGN do not

have this requirement.

One of the primary objectives of this design is to provide a security model that can

be applied to all message traffic such that a single set of policies can be developed

and enforced regardless of which network carries the message traffic.

32

5.1 Security Specifications – Overview

Several possible security models were considered as the following specifications were

being developed. In each case, we considered the following factors while evaluating
each model:

• Highly secure

• Scalability
• Architectural flexibility

• Standards based
• Network Independence

• Topology neutral

• Forward looking industry acceptance

• Ease of implementation

• Low maintenance

• Universally applicable to current and future JINDEX participants

The two basic Security models considered were:

• Transport Layer Security model using Secure Sockets Layer (SSL) which
creates a secure point to point pipeline.

• Message Layer Security model utilizing Web Services extension
specifications like Web Services – Security (WS-S) and Web Services Secure

Conversation (WS-SC). “Message Level Security”

After considering both models, it was determined that the JINDEX would be based on

Message Layer Security. This means that rather than creating secure channels for

the transmission of clear text data, each message will be encrypted using a digital

certificate and sent within a standard SOAP envelope.

The following sections describe at a high level the functioning of JINDEX within the

proposed Security Model, within the context of the three security elements discussed
previously 1) Authentication; 2) Authorization; 3) Data Privacy.

5.2 Authentication

Authentication seeks to determine; 1) who is sending a message to JINDEX, and 2)

that the party on the receiving end of a message is who JINDEX thinks they are.

The authentication portion of the JINDEX Security Model (JSM) will be accomplished

through the use of X.509 v3 Digital Certificates issued through a third party

Certificate Authority (CA). As of October, 2006, the State of Washington has a

special program with Digital Signature Trust (DST) (http://www.digsigtrust.com/state/wa/)

as their preferred Certificate Authority, however identical certificates are available
from other certificate authorities.

JINDEX participants may acquire a TrustID Server Certificate from DST for $175/year

(2006). This certificate will be used to secure and authenticate messages originating
from or being sent to a web or network server or JINDEX.

TrustID certificates are administered under the TrustID Certificate Policy sponsored

by the American Bankers Association. TrustID server certificates are standard x.509

33

v3 certificates and work with WS-* message security standards as well as SSL-

capable browsers and servers.

DST issues TrustID Server Certificates to agencies that are identified and

authenticated during online registration, as well as by third-party proofing and out-

of-band notification. As a part of the certification process, JINDEX participants will
receive a Public key as well as a Private key. The public key will be shared with

JINDEX in a secure, out of band process, but JINDEX participants are expected to
use reasonable efforts to protect the data and physical security of their Private Key.

A TrustID Server Certificate verifies the identity and ownership of a network server

and will be used to encrypt individual messages traveling to and from JINDEX.

5.2.1 Authentication Process

Every JINDEX partner complying with this specification will be required to obtain an

X.509 v3 digital certificate. JINDEX partners will share their Public Keys with

JINDEX, and JINDEX will share its Public Key with each of the participants. JINDEX

and each of the participants will NEVER share their private keys.

Whenever a message is sent, it is digitally signed using the sender’s private key and
encrypted using the destination’s public key. A copy of the sender’s public key is

sent along with the message.

When the message is received, the receiving server will:

• Validate the integrity of the message received using the senders public key

(data has not been corrupted)

• Compares the public key to the copy of the public key that was previously

shared with JINDEX.

• Extract unique identifying information from the certificate and perform a
table look-up returning a valid participant ID.

Should any of these tests fail, JINDEX will terminate the session, log the error,
discard the message and optionally, initiate a notification sequence to JINDEX

operations and the DIS Network Security Department.

If the message passes all of these tests, the message is determined to
“Authenticated”, which means it came from a legitimate JINDEX participant.

NOTE: WS Secure Conversation (WS-SC) allows for JINDEX and a participant

to set up a single “conversation” or session whereby a single

encryption/decryption key is used to secure a group of messages sent in a

“burst”. This is a performance boosting feature that will be employed as a

part of securing the message to and from JINDEX. The specifics of WS-SC will

not discussed in detail within this document.

34

5.3 Authorization

After the “Authentication” process has reliably determined who the sending
participant is, the Authorization process will determine what message types the

participant is eligible to send. Authorization will be accomplished via a look-up to a

database table as the message passes through the JINDEX system. This will be a
standardized process that will initially be used by the JINDEX-Traffic Records project,

but can be utilized by any subsequent project that follows standard BizTalk
messaging patterns.

5.3.1 Authorization Process

As the message enters the JINDEX platform, the Authentication processes will, using

the digital certificate included with the message, positively identify who the sending

party is and that they are a valid user of the JINDEX platform.

Unique information contained within the certificate will be used to do a look-up from
a participants table that will return the Participant ID. This value will be inserted into

the OriginatorID field in the message header, overwriting any value present.

Imbedded in the message header will be the text element “MessageType”, which will
have (SECTOR) values like “TICKET_MESSAGE”, “COLLISION_MESSAGE” or

“TICKET_RESPONSE”. Using the OriginatorID and the MessageType, the

authorization process will do a look-up into the Authorization database table and
retrieve the authorization rights for the sender / message being presented. Possible

levels of authorization will be:

• Normal – The sender’s messages have been previously certified and are

permitted to be published to the production environments of subscribing

participants.

• Test-Process – Messages will be processed through the entire JINDEX – E-

TRIP system as if production data. When the message passes through the

Routing Function, the destination address will be set to the destination Test
Environment URI.

• Test-Notify – Message will be processed through the entire JINDEX – E-TRIP

system, but will not be forwarded to the subscribing participant(s). After

completing the Business Rules layer of the process, a record will be placed in

the notification table indicating successful processing of the record. The

notification system will send an e-mail to the Development Contact for the

originating participant indicating the successful arrival of the message.

• BLOCKED - The authenticated Sender is not allowed to send this message
type. The message will be dropped and an e-mail with the senders message

ID will be sent back to the sender and a copy sent JINDEX Security officer.

The authorization table will contain “true/false” columns for each of these processing
modes. Within the header of the message will be a “ProcessingMode” element whose

value will be one of the following:

35

• Normal

• Test-Process

• Test-Notify

The message is considered authorized, when the ProcessingMode Element is equal to
one of the above strings, AND, the corresponding authorization element is set to

“True”.

If a message is received from an authorized sender, that does not have a
corresponding row in the authorization table, the message is treated as Blocked.

The schema for the authorization table is:

Key? Column Name Description
Data

Type
Acceptable Values

YES ParticipantID Unique integer
identifier for a

participant (Message
Originator)

Integer (1-99999999)

YES MessageTypeID Type of message
being sent

Text (ex. TICKET_MESSAGE;
COLLISION_MESSAGE;

COLLISION_RESPONSE)

YES ProcessingModeID Processing Mode Integer 1=Normal

2=Test-Process

3=Test-Notify

 AvailableYN Is combination of
ParticipantID,

MessageTypeID, and

ProcessingModeID
authorized?

Logical True / False

Note:

Each participant will have a record in the authorization table for each message type /
processing mode combination. If a matching record does not exist, the system will block

authorization by default.

Individual exchanges may choose to implement some, or all of the above

authorization functionality. Minimum functionality of the authorization process will
be to treat the message as Normal, or Blocked.

5.4 Data Privacy

Data Privacy is the third and final element of the proposed Security Model and covers

the requirements of securing the message data in transit to and from JINDEX, and

securing the data while it is stored, either within JINDEX, or within the sending or
receiving participant datacenter. (Also known as “Persisted Data”)

36

5.4.1 Data in Transit

As mentioned previously, all messages transmitted to and from the JINDEX platform

will be encrypted using a 128 bit key associated with the digital certificates of the

sending and receiving parties. Each message will be encrypted by its sender, and

decrypted only by the receiver of the message regardless of how many intermediary

devices the message passes through. (i.e. Fortress)

5.4.2 Persisted Data
Messages and data that are stored within a file server or on a laptop computer in a

Patrol Officers Squad car are examples of persisted data. This model proposes two

basic rules for persisted data:

1. If the device that contains the messages or data is easily portable, or typically

resides in an unsecured vehicle or facility, then the messages and data on

that device are considered vulnerable and should be encrypted on the data
storage mechanism of the device. A laptop computer in a police squad car is

an example of a vulnerable data store.

2. If the storage device that contains the messages or data, resides within a

secure facility or data center that maintains active and rigorous control over

access to the device and the data stores, then the data is not considered
vulnerable, and no additional data security should be required. Determination

of a facilities vulnerability status will be documented in the Service Level

Agreement between the participating participant and DIS.

5.4.3 Certification Protocol

As new message exchanges and new participants are brought online using the

JINDEX platform, a certification protocol should be followed. Though not strictly part

of the technical security model, the certification protocol is an important procedural

component of implementing the security model. The following points should be
included as a part of the participant certification process:

• Participant enters into a Service Level Agreement with DIS (JIN) covering

their usage of the JINDEX platform. The SLA will include individual Operation
Level Agreements covering:

o Datacenter Security and availability

o Network Capacity, Availability, Security and Support

o Server Capacity, Availability, Security and Support

o Application Support & Change Control

o Message Exchange Agreements (MEA) that cover the content, usage,

exchange protocol and specific security requirements of the

37

information being exchanged. (One SLA can have many MEA’s

associated with it.

• Participant acquires an x.509v3 digital certificate from a Certificating

Authority. The Participant will provide JINDEX with its Public Key.

• Participant successfully completes a series of scripted test routines ensuring

that they are exchanging data in compliance with the specific MEA being

certified.

• Responsible Governance board (E-TRIP etc) approves the participant for

production usage.

• WIJIB approves the participant for usage.

• JINDEX operations team updates the Authorization table reflecting production

status

38

6.0 Web Services Enhancements

6.1 WS-Security

WS-Security is a standard specification that describes enhancements to SOAP

messaging to provide message integrity and confidentiality. The specified

mechanisms can be used to accommodate a wide variety of security models and

encryption technologies.

The JINDEX design is based on the following standard specifications:

Web Services Security: SOAP Message Security 1.0 (OASIS Standard

200401, March 2004).

Web Services Security: X.509 Certificate Token Profile (OASIS Standard

200401, March 2004).

Web Services Security: Username Token Profile 1.0 (OASIS Standard

200401, March 2004).

39

6.1.1 Sending Secure Message
This section describes proposed sequence of steps to be implemented for each client

and service to conform to WS-Security standards. The WS-Security standards will be

implemented using WSE 3.0.

6.1.1.1 Diagram

Message

Client’s X.509

with public key
Message

Message signed

with Client’s

private key

Encrypted with

one time

symmetric key

Va
lid
at
es

ce
rti
fic
at
e

Decrypts with the Service’sprivate key

SERVICE

Client’s X.509

with public key

1.

2.

3.

Message signed

with Client’s

private key

5.

Client’s X.509

with public key

2.

1. Receives the

Message

Encrypted with

one time

symmetric key

Message signed

with Client’s

private key

Client’s X.509

with public key

3.
Encrypted with

one time

symmetric key

Message signed

with Client’s

private key

Client’s X.509

with public key

Message signed

with Client’s

private key

Client’s X.509

with public key

4. Uses Client’s public key to validate the

signature

Message
5.

One time

symmetric key

Encrypted with

one time

symmetric key

Message signed

with Client’s

private key

4.

Client’s X.509

with public key

Encrypted with

Service’s

public key

Server’s X.509

with public key

stored at the

Client

One time

symmetric key

Encrypted with

Service’s

public key

One time

symmetric key

Decrypts

with One time

symmetric key

One time

symmetric key

CLIENT

6. Sends the

Message

40

6.1.1.2 Description

6.1.1.2.1 The Client Initializes and Sends a Message with
X.509 Certificate Information

This part of the process has six steps:

1. The client retrieves the service's X.509 certificate.

2. The client retrieves its own certificate and private key.

3. The client attaches its X.509 certificate to a message.

4. The client signs the message using its private key.

5. The client encrypts the message using the service's public key.

6. The client sends the message to the service.

Step One. The Client Retrieves the Service's Certificate

The client needs to access the X.509 certificate of the service to encrypt the request
message. The WSE 3.0 policy assertion on the client is configured to retrieve the

service's certificate from the client's local certificate store without the need for any

additional code.

Step Two. The Client Retrieves Its own X.509 certificate and Private Key

The client accesses its X.509 certificate and private key. It uses the private key to

sign the message and the X.509 certificate to provide the service with the public key
and other information about the client for verification with the service.

Step Three: The Client Attaches Its X.509 Certificate to a Message

WSE 3.0 policy is configured to sign the message, and WSE 3.0 automatically

attaches the client's certificate to the request message.

Step Four: The Client Signs the Message Using Its Private Key

The client uses its private key to sign the message. One can choose to sign one or

more portions of the message, such as the address header or the message body. At
a minimum, one should sign the message body, security, and addressing headers. A

signature is created using a signature algorithm that computes a checksum value

from the data to be signed and then encrypts the checksum value with the client's
private key. When the signature is validated, the data used to create the signature is

also validated to provide data origin authentication.

Step Five: The Client Encrypts the Message Using the Service's Public Key

One can encrypt message parts using a symmetric key that is encrypted with the

public key from the service's X.509 certificate. At a minimum, the signature used to

sign the encrypted data is itself encrypted to help protect it against offline attacks.

When one uses WSE 3.0 policy to encrypt message data with X.509 certificates, the

policy uses asymmetric encryption to encrypt a one-time symmetric key, which in

41

turn encrypts the data. When message data is encrypted using the service's

certificate information, WSE 3.0 also adds the certificate identifier to the message. If

the certificate contains a subject key identifier, this is included to identify the

certificate in the message. Otherwise, the policy uses the issuer name and certificate

serial number instead. The service owns the certificate, which contains all the
necessary information for it to access the appropriate private key and decrypt the

symmetric key, which is then in turn used to decrypt the message.

Encrypting the request in this way protects sensitive data if the client is deceived into

calling an illegitimate service. As the intended message recipient, only the correct

Web service can decrypt the message with its private key.

Step Six: The Client Sends the Message to the Service

After the message is signed and encrypted, the client sends it to the service.

6.1.1.2.2 Service Authenticates a Client Using the X.509

Certificate and Signature

This part of the process has six steps:

1. The service validates the client's certificate.

2. The service verifies the certificate trust chain.

3. The service checks the certificate revocation status.

4. The service decrypts the message.

5. The service verifies the signature.

6. The service initializes and sends a response to the client (optional).

Step One: The Service Validates the Client's Certificate

WSE 3.0 validates the client's certificate attached to the request message. The

certificate's validity period is checked to ensure that the service does not process a
request that was secured with an expired X.509 certificate.

WSE 3.0 also verifies the integrity of the certificate's contents to ensure that it has

not been tampered with after the certificate authority (CA) issued it. The integrity of

the certificate's contents is verified using the signature of the issuing CA, which is

also included in the certificate. If the certificate's contents cannot be validated

against the issuer's signature, then the certificate has been tampered with and it is

rejected as invalid.

Step Two: The Service Verifies the Certificate Trust Chain

By default, WSE 3.0 verifies the trust chain of certificates, or requires that the

client's certificate is installed in the Trusted People folder in the service's local

certificate store. WSE 3.0 must be able to recognize an issuing CA as trusted to
verify the certificate trust chain for the client's X.509 certificate. WSE 3.0 recognizes

an issuing CA as trusted based on the X.509 certificate that endorses the client's
certificate. WSE 3.0 recognizes the issuing CA's certificate as a trusted root for a

certificate chain if the CA's X.509 certificate is installed in the machine certificate

store in the Trusted Root Certification Authorities folder.

The high-level steps to install a certificate chain are as follows:

42

1. Export the certificate chain from the CA. This is dependant on the type of CA

that issued the certificate.

2. Import the certificate chain into a local certificate store.

Step Three: The Service Checks the Certificate Revocation Status

WSE 3.0 policy checks the revocation status of the certificate by verifying whether

the certificate is on a certificate revocation list (CRL) that the CA publishes. One can

obtain the CRL out-of-band by downloading it from a CA, and then importing it into a
local certificate store where WSE 3.0 can access it. You can also check the revocation

status of the certificate online. However, this approach relies on an online revocation

service that the service must access to verify the certificate's revocation status.

There is also a performance cost associated with checking the revocation status

online. For this reason, one may want to consider downloading the CRL instead and

frequently updating the cached CRL. By default, WSE 3.0 verifies the revocation

status of X.509 certificates online.

Step Four: The Service Decrypts the Message

By default, the mutualCertificate10Security assertion protects the message body

by encrypting it. When WSE 3.0 receives an encrypted message, WSE 3.0 policy

automatically decrypts it using the following steps:

1. WSE determines the value to identify the service's certificate—either the

RFC3280 Subject Key Identifier, or the issuer name and serial number—that the

client included in the message tells the service which certificate was used to

encrypt the message. WSE 3.0 policy uses this value to determine which private

key it must use to decrypt the message.

2. WSE decrypts the asymmetrically encrypted, one-time symmetric key that the

client sent with the message, using the service's private key

3. WSE uses the symmetric key to decrypt the message data using a symmetric
algorithm. By default, WSE 3.0 uses AES 256 for symmetric encryption.

Note Service side policy alone does not stop a client from sending an unencrypted

message. However, policy will reject a message at the server if it is not encrypted.

Step Five: The Service Verifies the Signature

WSE 3.0 verifies the client's signature on the incoming request message using the

public key sent with the message. If the message data is signed, this step also

validates the client as the message originator to provide data origin authentication.

Step Six: The Service Initializes and Sends a Response to the Client
(Optional)

If the service returns a secure response to the client, the same process described in
these steps is used for the response message between the service and the client,

except that the roles of the client and the service reverse. However, unlike the

request message, the service does not attach its X.509 certificate to the response
message, because the client already has a copy of it.

Instead, WSE 3.0 policy adds a reference to the service's certificate in the response

message. The service initiates and sends the response, signs it with the service's

private key and encrypts it with a symmetric key that is encrypted with the client's

43

X.509 certificate public key. The client processes the response in the same manner

as the service processed the request: decrypt the symmetric key with the client's

private key, and then decrypt the encrypted message parts with the symmetric key.

Finally, the client verifies the service's signature with the service's X.509 certificate.

6.1.1.3 Implementation

Implementation of the processes in JINDEX will be done using MS WSE 3.0.

Suggested scenarios are described in Web Service Security: Scenarios, Patterns,

and Implementation Guidance for Web Services Enhancements (WSE 3.0) by

Microsoft.

6.2 WS-Secure Conversation

WS-Secure Conversation is a standards specification that defines mechanisms for

establishing and sharing security contexts, and deriving keys from established
security contexts. It provides secure communications across one or more messages.

JINDEX design is based on the following standard specification:

Web Services Secure Conversation Language (WS-SecureConversation).

6.2.1 Secure Conversation Design
This section describes proposed sequence of steps to be implemented for each client

and service to conform to WS-Secure Conversation standards.

6.2.1.1 Description

There are several reasons for establishing a secure conversation, including:

• Preventing the client from having to present a user name and password each

time it accesses a different service. This could involve the client having to cache

the client's original credentials (which is not considered a safe security practice)

or prompting users to provide their credentials each time.

• Improving performance when resource-intensive forms of credentials, such as

X.509 digital signatures, are used. Creation and validation of X.509 digital

signatures is a computationally intensive process, so performance can be
improved if they are used less frequently.

WS-SecureConversation is a Web service specification that builds on WS-Security
and WS-Trust. It describes how to establish a lightweight security context between

two parties. The security context uses session keys; these session keys become the

basis for encrypting and signing subsequent message exchanges, which results in

more efficient secure communications between the two parties.

Note The security of any conversation depends on the key exchange mechanism.

Typically, the key exchange mechanism is based on a key management

infrastructure, such as one based on PKI or shared secrets.

44

6.2.1.2 Implementation

Implementation of the processes in JINDEX will be done using MS WSE 3.0.

45

7.0 Web Services Interface

7.1 General Description
Messages are passed between Participants and JINDEX. To pass the messages all

parties use push-technology rather than pull-technology. To pass a message to

JINDEX, the Participant invokes JINDEX Receiving Web Service. To pass a message

to a Participant, JINDEX invokes the Participant Receiving Web Service. The Web

Service Description and message format are identical among all participants, though

some participants may enforce some business rules differently than others.

Each message sent will be acknowledged with success/failure synchronously, in

receiving messages is reported to the Sender .

7.2 Receiving Web Service

7.2.1 JINDEXExchange Web Method
All JINDEX /E-Trip participants support the JINDEXExchange Web method.

Participants call this method synchronously to submit documents to JINDEX. A

completed exchange involves sending a message and receiving back an

acknowledgement, The input message is named “JINDEXDocument” and the

acknowledgement message is named “JINDEXAcknowldegement”. There can be one

and only one JINDEXDocument coupled with one and only one

JINDEXAcknowldegement.

The JINDEXDocument contains two substructures named JINDEXParameter and

JINDEXMessage. JINDEXParameter contains eight (8) elements used to validate the
authorization of the sending participant and reliably route each message to its

correct destination. These eight elements are defined explicitly in the web service

description provided below (see WSDL listing). The JINDEXMessage structure

contains the justice related XML data being shared by the participants. The actual

schema of the JINDEXMessage is not defined in the web service description and is

left to the sending and receiving participant to jointly develop and maintain.

Because of this design feature, participants may enhance and expand the content of

the JINDEXMessage without concern about it affecting the core functions of the

JINDEX / E-trip messaging system.

7.2.1.1 Signature

Target namespace: "http://WSDIS.eTrip.ReceivingServices/"

public XMLDocument JINDEXExchange

(XMLDocument JINDEXDocument)

46

7.2.1.2 Input Document Formats

Messages are transmitted between participants within the context of a complex XML

document structure called JINDEXDocument.

JINDEXDocument

Below is a portion of the actual WSDL for the JINDEXExchange method describing

the elements of the JINDEXDocument.

<s:schema elementFormDefault="qualified" targetNamespace="http://WDIS.E-Trip">

 <s:element name="JINDEXDocument" type="s1:JINDEXDocument" />
 <s:complexType name="JINDEXDocument">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="JINDEXParameter" type="s1:JINDEXParameters" />
 <s:element minOccurs="1" maxOccurs="1" name="JINDEXMessage">
 <s:complexType mixed="true">
 <s:sequence>
 <s:any />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:sequence>
 </s:complexType>
 <s:complexType name="JINDEXParameters">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="MessageType" type="s1:MessageTypes" />
 <s:element minOccurs="1" maxOccurs="1" name="ProcessingMode" type="s1:ProcessingModes" />
 <s:element minOccurs="1" maxOccurs="1" name="CreateDateTime" type="s:dateTime" />
 <s:element minOccurs="1" maxOccurs="1" name="OriginatorID" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="OriginatorMessageID" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="PersonalIdentifier" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="JINDEXRecipientID" type="s:int" />
 <s:element minOccurs="0" maxOccurs="1" name="JINDEXMessageID" type="s:int" />
 </s:sequence>
 </s:complexType>
 <s:simpleType name="MessageTypes">
 <s:restriction base="s:string">
 <s:enumeration value="NULL_MESSAGE" />
 <s:enumeration value="COLLISION_MESSAGE" />
 <s:enumeration value="COLLISION_RESPONSE" />
 <s:enumeration value="DISPOSITION_MESSAGE" />
 <s:enumeration value="DISPOSITION_RESPONSE" />
 <s:enumeration value="TICKET_MESSAGE" />
 <s:enumeration value="TICKET_RESPONSE" />
 </s:restriction>
 </s:simpleType>
 <s:simpleType name="ProcessingModes">
 <s:restriction base="s:string">
 <s:enumeration value="NULL_MODE" />
 <s:enumeration value="NORMAL" />
 <s:enumeration value="TEST_NOTIFY" />
 <s:enumeration value="TEST_PROCESS" />
 </s:restriction>
 </s:simpleType>

MessageType. Identifies the document type. The valid values are TICKET_MESSAGE,
COLLISION_MESSAGE, DISPOSITION_MESSAGE, TICKET_RESPONSE, COLLISION_RESPONSE,
and DISPOSITION_RESPONSE. NULL_TYPE is provided as a default value for when a message

47

arrives without a value in this element. This situation is then trapped and triggers an error

condition. The usage of these values is specified in the section 9.4 “Authorization” of the

logical design.

ProcessingMode. Indicates whether the document is a regular document (“NORMAL”)

or a test document and has to be processed according to a certain rule

(“TEST_PROCESS”, “TEST_NOTIFY”). Valid values are NORMAL, TEST_PROCESS,

and TEST_NOTIFY. NULL_MODE is provided as a default value for when a message arrives

without a value in this element. This situation is then trapped and triggers an error condition.

CreationDateTime. Identifies the date and time (in a standard date/time format,

specified in ISO 8601) of the message creation by the Sender.

The date and time should include the time zone, and be presented in the

following format: YYYY-MM-DDThh:mm:ss.sTZD, where

 YYYY = four-digit year

 MM = two-digit month (01=January, etc.)

 DD = two-digit day of month (01 through 31)
 T = letter “T”

 hh = two digits of hour (00 through 23) (am/pm NOT allowed)

 mm = two digits of minute (00 through 59)

 ss = two digits of second (00 through 59)

 s = one or more digits representing a decimal fraction of a second

 TZD = time zone designator (Z or +hh:mm or -hh:mm)

For example, 1994-11-05T08:15:30-05:00 corresponds to November 5, 1994,

8:15:30 am, US Eastern Standard Time. 1994-11-05T13:15:30Z corresponds to

the same instant.

The time zone designator is not mandatory. In case it is omitted, local Pacific
Time is assumed.

OriginatorID. JINDEX internal identification of the Participant (original sender of the
message). This element is should be left blank when a message is originated by a

participant. If a value is present, it will be ignored by JINDEX. Using the x.509

certificate attached to the message, JINDEX will determine the identity of the

originator and insert an integer value corresponding to that participant into this

element.

OriginatorMessageID. Unique identifier of the message in the system that originated
it. For functional responses this element identifies the functional response message

and not the message that caused that functional response. For instance, if the

message is a TICKET_RESPONSE, the OriginatorMessageID identifies the response
and not the message that delivered the traffic ticket. In case of an error when

processing the message by the Receiving Web Services JINDEX replies to the Sender

with this message ID, as described in 5.1.2.1.11.

PersonalIdentifier. Identifier of the person originated the message. This element is

not used in this version and should be an empty string. This element may be used in

future versions to identify the individual that generated a particular message.

JindexRecipientID. JINDEX internal identification of the Participant (recipient of the

functional response). For Traffic Tickets, Collision Reports, and Disposition Reports

this element is not processed and should be empty. The Sender of the functional

48

response uses the OriginatorID element from the original message to populate the

JindexRecipientID element.

JINDEXMessageID. Unique message ID generated in JINDEX and added to JINDEX

outbound messages. The non-null element is ignored if present in an inbound

message to JINDEX and is overwritten in the outbound message.

7.2.1.3 JINDEX Exchange Response Format

JINDEXAcknowledgement

<s:element name="JINDEXAcknowledgment" type="s1:JINDEXAcknowledgment" />
 <s:complexType name="JINDEXAcknowledgment">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="ReturnCode" type="s1:ReturnCodeTypes" />
 <s:element minOccurs="1" maxOccurs="1" name="MessageID" type="s:string" />
 </s:sequence>
 </s:complexType>
 <s:simpleType name="ReturnCodeTypes">
 <s:restriction base="s:string">
 <s:enumeration value="NULL_RETURN" />
 <s:enumeration value="P" />
 <s:enumeration value="E24" />
 <s:enumeration value="E26" />
 <s:enumeration value="E30" />
 <s:enumeration value="E32" />
 <s:enumeration value="F" />
 <s:enumeration value="T" />
 </s:restriction>
 </s:simpleType>

ReturnCode. In case of success, Participants will return “P” (for Processing). In case

of an error, Participants will return one of error codes described in section 8.1 (E24,
E26, E30, E32, F or T).

OriginalMessageID. Identifier of the message generated by the system that

originated the message. In this element JINDEX returns the value received in the

OriginatorMessageID element. Participants would populate this element with the

JINDEXMessageID from messages received from JINDEX.

49

7.3 JINDEX Web Service WSDL

The following is the JINDEX Exchange API WSDL developed and approved by the

SECTOR Technical Advisory Group on September 29th, 2006.

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tns="http://WSDIS.eTrip.ReceivingServices/"
 xmlns:s1="http://WDIS.E-Trip"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 targetNamespace="http://WSDIS.eTrip.ReceivingServices/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">JINDEX Messaging Web
Service</wsdl:documentation>

 <wsdl:types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://WSDIS.eTrip.ReceivingServices/">
 <s:import namespace="http://WDIS.E-Trip" />
 <s:element name="JINDEXExchange">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" ref="s1:JINDEXDocument" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="JINDEXExchangeResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" ref="s1:JINDEXAcknowledgment" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 <s:schema elementFormDefault="qualified" targetNamespace="http://WDIS.E-Trip">
 <s:element name="JINDEXDocument" type="s1:JINDEXDocument" />
 <s:complexType name="JINDEXDocument">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="JINDEXParameter" type="s1:JINDEXParameters" />
 <s:element minOccurs="1" maxOccurs="1" name="JINDEXMessage">
 <s:complexType mixed="true">
 <s:sequence>
 <s:any />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:sequence>
 </s:complexType>
 <s:complexType name="JINDEXParameters">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="MessageType" type="s1:MessageTypes" />
 <s:element minOccurs="1" maxOccurs="1" name="ProcessingMode" type="s1:ProcessingModes" />
 <s:element minOccurs="1" maxOccurs="1" name="CreateDateTime" type="s:dateTime" />

50

 <s:element minOccurs="1" maxOccurs="1" name="OriginatorID" type="s:int" />
 <s:element minOccurs="1" maxOccurs="1" name="OriginatorMessageID" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="PersonalIdentifier" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" name="JINDEXRecipientID" type="s:int" />
 <s:element minOccurs="0" maxOccurs="1" name="JINDEXMessageID" type="s:int" />
 </s:sequence>
 </s:complexType>
 <s:simpleType name="MessageTypes">
 <s:restriction base="s:string">
 <s:enumeration value="NULL_MESSAGE" />
 <s:enumeration value="COLLISION_MESSAGE" />
 <s:enumeration value="COLLISION_RESPONSE" />
 <s:enumeration value="DISPOSITION_MESSAGE" />
 <s:enumeration value="DISPOSITION_RESPONSE" />
 <s:enumeration value="TICKET_MESSAGE" />
 <s:enumeration value="TICKET_RESPONSE" />
 </s:restriction>
 </s:simpleType>
 <s:simpleType name="ProcessingModes">
 <s:restriction base="s:string">
 <s:enumeration value="NULL_MODE" />
 <s:enumeration value="NORMAL" />
 <s:enumeration value="TEST_NOTIFY" />
 <s:enumeration value="TEST_PROCESS" />
 </s:restriction>
 </s:simpleType>
 <s:element name="JINDEXAcknowledgment" type="s1:JINDEXAcknowledgment" />
 <s:complexType name="JINDEXAcknowledgment">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="ReturnCode" type="s1:ReturnCodeTypes" />
 <s:element minOccurs="1" maxOccurs="1" name="MessageID" type="s:string" />
 </s:sequence>
 </s:complexType>
 <s:simpleType name="ReturnCodeTypes">
 <s:restriction base="s:string">
 <s:enumeration value="NULL_RETURN" />
 <s:enumeration value="P" />
 <s:enumeration value="E24" />
 <s:enumeration value="E26" />
 <s:enumeration value="E30" />
 <s:enumeration value="E32" />
 <s:enumeration value="F" />
 <s:enumeration value="T" />
 </s:restriction>
 </s:simpleType>
 </s:schema>

 </wsdl:types>

 <wsdl:message name="JINDEXExchangeSoapIn">
 <wsdl:part name="parameters" element="tns:JINDEXExchange" />
 </wsdl:message>
 <wsdl:message name="JINDEXExchangeSoapOut">
 <wsdl:part name="parameters" element="tns:JINDEXExchangeResponse" />
 </wsdl:message>
 <wsdl:portType name="JINDEXMessagingServiceSoap">
 <wsdl:operation name="JINDEXExchange">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">Listener method for receiving messages from the
JINDEX.</wsdl:documentation>
 <wsdl:input message="tns:JINDEXExchangeSoapIn" />
 <wsdl:output message="tns:JINDEXExchangeSoapOut" />
 </wsdl:operation>
 </wsdl:portType>

51

 <wsdl:binding name="JINDEXMessagingServiceSoap" type="tns:JINDEXMessagingServiceSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="JINDEXExchange">
 <soap:operation soapAction="http://WSDIS.eTrip.ReceivingServices/JINDEXExchange" style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="JINDEXMessagingServiceSoap12" type="tns:JINDEXMessagingServiceSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="JINDEXExchange">
 <soap12:operation soapAction="http://WSDIS.eTrip.ReceivingServices/JINDEXExchange" style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="JINDEXMessagingService">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">JINDEX Messaging Web
Service</wsdl:documentation>
 <wsdl:port name="JINDEXMessagingServiceSoap" binding="tns:JINDEXMessagingServiceSoap">
 <soap:address
location="https://businessqa.wsdot.wa.gov/highwaysafety/collision/report/electronic/JINDEXMessagingService.asmx" />
 </wsdl:port>
 <wsdl:port name="JINDEXMessagingServiceSoap12" binding="tns:JINDEXMessagingServiceSoap12">
 <soap12:address
location="https://businessqa.wsdot.wa.gov/highwaysafety/collision/report/electronic/JINDEXMessagingService.asmx" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

52

8.0 Business Rules Layer and Data Layer

8.1 Message Statuses
A message position in the JINDEX message flow is identified by the message Status

field. The last Status information is saved in JINDEX Message Log and may be

delivered to Participants via Notification Services.

 Message statuses:

1. P (Processing). BizTalk got the message for processing. JINDEX accepts
responsibility for the message, and the message Sender is informed by

receiving Success return code.

2. E20 (Error). The Message Type is invalid.

(NOTE: In release 1.10 and higher of the E-Trip Messaging system, Message Type is checked
at the Web Service layer as an enumerated value in the WSDL. As such, E20 should never

appear as a message status under normal conditions. Because of the critical nature of this
element, the BizTalk logic still checks the validity of the value to ensure that the WSDL, and

the routing logic stay in sync.)

3. E22 (Error). The Processing Mode is invalid.

(NOTE: In release 1.10 and higher of the E-Trip Messaging system, Processing Mode is
checked at the Web Service layer as an enumerated value in the WSDL. As such, E22 should

never appear as a message status under normal conditions. Because of the critical nature of

this element, the BizTalk logic still checks the validity of the value to ensure that the WSDL,

and the routing logic stay in sync.)

4. E24 (Error). The Sender is not part of JINDEX Participant list.

5. E26 (Error). The Sender is not authorized to send messages of the given type

and in the given mode.

6. E30 (Error). The JINDEXRecipientID parameter element is empty when a

value was expected.

7. E32 (Error). The JINDEXRecipientID parameter does not match any valid
Participant or there is no entry in the Routing table.

8. E34 (Error). The destination URI is not set (or blocked).

9. E50 (Error). Any other error occurred during message processing.

10. S (Ready to be sent). BizTalk completed message processing; the message is

ready to be sent.

11. C (Completed). Recipient successfully received the message.

12. F (Failure). Recipient responded with failure.

13. E60 (Error). Recipient responded with anything other than C or F.

53

14. T (Test-Notify Completed). Message has been processed successfully, but was

not sent. Message information is stored in the Message Log.

When the message is successfully delivered or the message can not be processed (as

a result of an error), the message is removed from the processing loop. For security

reasons JINDEX does not archive the messages. The following information is stored
in the system during processing:

- JINDEX Message ID (unique integer identifier generated when the message is
accepted by JINDEX)

- JINDEXMessage (XML document created by the Message Originator)

- MessageType (assigned by the Message Originator)

- ProcessingMode (assigned by the Message Originator)

- CreationDateTime (populated by the Sender (either the message originator or
JINDEX))

- OriginatorMessageID (assigned by the Message Originator)

- PersonalIdentifier (assigned by the Message Originator, for future versions)

- Sender X.509 Certificate identification (received with the message (either the

message originator or JINDEX))

- OriginatorID (if blank field is received, will be filled in later)

- JINDEXRecipientID (assigned by the Sender of a functional response)

- Destination URI (determined from routing table within JINDEX)

- Received Date/Time (the time when JINDEX received the message)

- Message Status

- Modification Date/Time

- Priority (for future versions)

The OriginatorID is filled in when JINDEX identifies the sender using the senders

X.509 certificate.

8.2 Archiving Messages in the Message Log
Message Log keeps information about messages processed by JINDEX for auditing

purposes. For security reasons the message itself is not archived. When JINDEX
removes a message from the Processing Queue (the message could be successfully

processed or an error could occur), the following information is stored in the log:

- JINDEXMessageID

- MessageType

- ProcessingMode

- CreationDateTime

- OriginatorMessageID

- PersonalIdentifier (identifies the person, originated the document)

54

- OriginatorID (unique identifier of the Participant in JINDEX)

- JINDEXRecipientID (assigned by the Sender for functional responses)

- Destination URI (assigned by JINDEX)

- Received Date/Time

- Last Message Status

- Completed Date/Time (the time when JINDEX submitted the message or

failed with error)

8.3 Authentication
Authentication of the message senders is performed based on the client X.509

certificates. JINDEX will keep Participant X.509 certificates in the Windows Server

Certificate Storage. When a message arrives, the certificate encrypted into the

message, will be examined and validated against the stored certificates. Each

participant will have a unique participant ID assigned by JINDEX and kept in JINDEX

Participant table. Participant IDs will be matched with X.509 certificates based on

the combination of the Issuer and Certificate Number fields.

 DIS will provide procedures for securely exchanging certificates with participants

and will be responsible for maintaining the authentication table.

8.4 Authorization
Before any message is processed and routed through JINDEX, the message Sender

has to be authorized. The authorization process has to confirm that the message
Sender is authorized to send a message of the specified type to be processed in the

specified mode. DIS will provide procedures and will be responsible for maintaining

the authorization table.

The following are the available message processing modes for different originating

Participants and different message types in the Q/A test environment:

Q/A Test Environment

Originating

Participant

Message

Type

Available Message

Processing Modes
{LEA}_SECTOR TICKET_MESSAGE Normal; Test- Process; Test-Notify

 COLLISION_MESSAGE Normal; Test- Process; Test-Notify

 DISPOSITION_MESSAGE BLOCKED

 TICKET_RESPONSE Test- Process; Test-Notify

 COLLISION_RESPONSE Test- Process; Test-Notify

 DISPOSITION_RESPONSE BLOCKED

AOC TICKET_MESSAGE Test- Process; Test-Notify

 COLLISION_MESSAGE BLOCKED

55

Q/A Test Environment

Originating

Participant

Message

Type

Available Message

Processing Modes
 DISPOSITION_MESSAGE Normal; Test- Process; Test-Notify

 TICKET_RESPONSE Normal; Test- Process; Test-Notify

 COLLISION_RESPONSE BLOCKED

 DISPOSITION_RESPONSE Test- Process; Test-Notify

DOL TICKET_MESSAGE BLOCKED

 COLLISION_MESSAGE Test- Process; Test-Notify

 DISPOSITION_MESSAGE Test- Process; Test-Notify

 TICKET_RESPONSE BLOCKED

 COLLISION_RESPONSE Test- Process; Test-Notify

 DISPOSITION_RESPONSE Normal; Test- Process; Test-Notify

WSDOT TICKET_MESSAGE BLOCKED

 COLLISION_MESSAGE Test- Process; Test-Notify

 DISPOSITION_MESSAGE BLOCKED

 TICKET_RESPONSE BLOCKED

 COLLISION_RESPONSE Normal; Test- Process; Test-Notify

 DISPOSITION_RESPONSE BLOCKED

Table 1 – QA Test Environment Authorization Table

The following are the available message processing modes for different originating

Participants and different message types in the production environment:

Production Environment

Originating

Participant

Message

Type

Available Message

Processing Modes
{LEA}_SECTOR TICKET_MESSAGE Normal; Test- Process; Test-Notify

 COLLISION_MESSAGE Normal; Test- Process; Test-Notify

 DISPOSITION_MESSAGE BLOCKED

 TICKET_RESPONSE BLOCKED

 COLLISION_RESPONSE BLOCKED

 DISPOSITION_RESPONSE BLOCKED

AOC TICKET_MESSAGE BLOCKED

 COLLISION_MESSAGE BLOCKED

56

Production Environment

Originating

Participant

Message

Type

Available Message

Processing Modes
 DISPOSITION_MESSAGE Normal; Test- Process; Test-Notify

 TICKET_RESPONSE Normal; Test- Process; Test-Notify

 COLLISION_RESPONSE BLOCKED

 DISPOSITION_RESPONSE BLOCKED

DOL TICKET_MESSAGE BLOCKED

 COLLISION_MESSAGE BLOCKED

 DISPOSITION_MESSAGE BLOCKED

 TICKET_RESPONSE BLOCKED

 COLLISION_RESPONSE BLOCKED

 DISPOSITION_RESPONSE Normal; Test-Process; Test-Notify

WSDOT TICKET_MESSAGE BLOCKED

 COLLISION_MESSAGE BLOCKED

 DISPOSITION_MESSAGE BLOCKED

 TICKET_RESPONSE BLOCKED

 COLLISION_RESPONSE Normal; Test-Process; Test-Notify

 DISPOSITION_RESPONSE BLOCKED

Table 2 – Production Environment Authorization Table

8.5 Routing

8.5.1 Message Types and Processing Modes
Routing is based on Message Types and Processing Modes.

Acceptable Message Types are the following:

1. TICKET_MESSAGE

2. TICKET_RESPONSE

3. COLLISION_MESSAGE

4. COLLISION_RESPONSE

5. DISPOSITION_MESSAGE

6. DISPOSITION_RESPONSE

57

Acceptable Processing Modes are the following:

1. Normal

2. Test-Process

3. Test-Notify

8.5.2 Routing Types
1. All message types except Traffic Ticket Functional Response and Collision

Functional Response types sent in the Normal or Test-Process modes are

delivered to the predetermined Recipients. The routing algorithm is based on the

following table:

Normal and Test-Process Processing Modes

Originating
Participant

Message Type Recipient

{LEA}_SECTOR TICKET_MESSAGE AOC

 COLLISION_MESSAGE WSDOT, DOL

AOC DISPOSITION_MESSAGE DOL

 TICKET_RESPONSE Originating LEA

DOL DISPOSITION_RESPONSE AOC

WSDOT COLLISION_RESPONSE Originating LEA & DOL

Table 3 – Routing Table

2. A functional response to a Traffic Ticket or Collision message has to be delivered

to a particular Law Enforcement Agency that originated the original message.

When JINDEX passes the original message to a Participant, it submits the

ORIGINATORID as one of the parameters. This ID has to be returned by the

Participant, sending the response as the JINDEXRecipientID parameter. JINDEX

uses this parameter to identify the ultimate recipient of the functional response.

3. The third routing type applies to all messages being sent in the Test-Notify mode.
After being processed, the messages are logged in the Message Log for delivery

by Notification Services.

8.6 Addressing

8.6.1 Addressing Information
JINDEX determines the destination URI for messages to be delivered based on the
Recipient ID, current status of the Recipient, Message Type, and Processing Mode.

58

Participants may use different URIs for different message types. The status of the

Recipient is preset (except Not Responding) and can be changed by JINDEX

administrator.

The following table describes the parameters to be considered to determine the

destination address (URI).

Column Description Values

Recipient Participant where the messages will be sent. WSP; Seattle PD

DOL; AOC; WSDOT

Recipient Status Is the Participant accepting these messages and in

what processing mode:

• NORMAL – Participant is in production mode

for this message type. Messages sent with a
processing flag of Normal will be passed to the
“Normal URI”.

• TEST – Participant is not in production mode

for this message type. Messages received
with a “Normal” processing flag will be treated

as “Hold”. Messages flagged as “Test-Process”
will be sent to the Test Address.

• HOLD – Participant is temporarily not

accepting messages. Messages will be
addressed to their proper destination, but will

be queued.

• DRBC – Participant has executed its Disaster
Recovery / Business Continuity (DRBC) plan.
Normal messages will be addressed to the
DRBC address. Test-Process messages will be
processed normally, but will be queued.

• NOT RESPONDING – communication with the

Participant failed. Messages are queued for
resending.

Normal, Test, Hold,
DRBC, Not Responding

Normal Address Address where messages should be sent whose

process flag is set to “Normal” and Participant Status
is set to Normal.

Test Address Address where messages should be sent whose
process flag is set to “Test-Process”, and where the

Participant Status is set to Normal or Test.

DRBC Address Address where messages should be sent whose
process flag is set to “Normal” and where the

Participant status is set to “DRBC”.

Table 4 – Addressing rules

59

8.7 Error Handling
In case of a processing error the following actions will be taken:

1. Message information will be logged in the Message Log if an error occurred in

BizTalk. It will specify error code, additional error information, and other message

parameters.

2. If SQL Server is not responding or in case of another critical system error,

JINDEX attempts to log the message in the Windows Application log.

3. MS SQL Server Notification Services (SSNS) will pick this record from the

Message Log and send an e-mail notification to an appropriate system

administrator.

8.7.1 Message Log
Message Log holds information about messages along with the error code.

8.7.2 Error Categories
1. Message validation errors.

2. Sender validation errors.

3. Message schema validation errors.

4. Communication errors.

5. Other party errors.

6. JINDEX internal errors.

Error categories will be used to set up subscriptions for notifications.

8.8 Notification

Notifications are implemented by means of MS SQL Service Notification Services

(SSNS). The notification procedure will perform periodic checking of specified SQL

Sever tables based on given queries, and send completely configurable notifications

to notification subscribers by means of different communication tools (e-mail

primarily). To submit the notifications via e-mail an SMTP server has to be set up.
However, notifications can be sent to a variety of devices: cellular phones, PDAs, or

MSN messenger accounts.

8.8.1 Notification Message Structure
1. Notification sender: JINDEX. The From SMTP field is the same for all messages,

for example, jindex@jindex.com.

2. Notification recipient(s): configurable address(es) based on the original message

type and configuration message type.

3. Notification body.

60

For security reasons e-mail notifications will not have any original message attached.

The following information can be sent in the notification:

- JINDEX Unique Message ID

- Message Type

- Processing Mode

- Creation Date/Time

- Original Message ID

- Personal Identifier

- Sender ID

- Recipient ID

- Destination URI

- Received Date/Time

- Last Message Status

- Last Modification Date/Time

- Notification Description (error information, in case if an error occurs)

8.8.2 Notification Subscriptions
Notifications are generated by JINDEX and sent to notification subscribers. Each

subscription will be configured based on

1. Original message type;

2. Processing mode;

3. Sender ID;

4. Message category (such as an error category, for example).

8.9 Auditing
Auditing will be performed periodically based on JINDEX Message Logs.

Parameterized queries can be run against the log with the parameters corresponding

to the fields in the log (see 9.2).

